1 技術概要

整理番号	T-00070
技術名称	廃棄物量を最小限にした薄層浚渫による水域の汚染底質拡散防止技術
申請機関名	株式会社小島組
技術の概要	ため池、ダム等の水域では、放射性物質は水底に堆積している。そのため、渇水時には水による遮蔽効果がなくなり空間線量率が増加したり、増水時には濁水が流出して下流域へ汚染が拡大したりするおそれがある。このような水域において、密閉二重構造グラブ浚渫工法(薄層浚渫工法)を適用することで、汚染された底質の除去により放射性物質の拡散を防止する。 ©グラブ程で、アクラブ程度 ©グラブ (ジェル) 程で でクラブ程度 ©グラブ (ジェル) 程で でクラブ程度 (の間のフラップは) (ジェル) 程で での間のアラップは、 (の間のフラップは、 (の間のフラップは、 (の間のフラップは、 (の間のフラップは、 (の間のフラップは、 (の間のでラップは、 (の間のでラップは、 (の間のでラップは、 (の間のでラップは、 (の間のでラップは、 (の間のでラップは、 (の間のでは、 (の間のでラップは、 (の間のでラップは、 (の間のでは、 (のでは、 (のでは
技術の優位性	当該技術は一般にポンプ系よりも廃棄物発生量の少ないグラブ系の浚渫工法であり、密閉型グラブの使用と水平掘削により汚濁の少ない必要最小限の浚渫を可能とする。水域での除染において有力なオプションとなる技術である。 ※ *** ***
注意点	施工箇所及び周辺水域におけるモニタリングを実施し、作業員及び公衆の被ばく防止 措置を行う。
研究・実用化段階	実用化段階
今後の開発計画	更なるグラブの密閉性の工夫。 グラブ系に限らず、水中において浚渫機械が移動することで表層底泥をまき上がらせることが想定されるため、浚渫範囲を汚濁防止枠などで仕切り、表層底泥を拡散させない等の措置が必要である。
特許	薄層浚渫工法(密閉二重構造グラブ浚渫工法) ・特許第4944541号 ・特開2008-45378
参考サイト	密閉二重構造グラブ浚渫工法 🗗
補足資料	
備考	薄層浚渫工法(密閉二重構造グラブ浚渫工法(グラブバケット式揚土装置およびスラリ状土砂の空気圧式輸送システム))は、株式会社小島組の特許である。

② 実証試験の概要及び結果

実証期間

実証場所	福島県相馬郡飯舘村内の農業用ため池
実証内容	(1)底泥試料の採取による放射能濃度の把握。 (2)薄層浚渫工法を適用した場合の除染効果の確認。 除染効果の確認は、シンチレーションファイバ線量当量率測定装置で測定した底泥表 面の放射線量率を用いた。 薄層浚渫工法 薄層浚渫工法
技術適用の効果	(1)底泥試料の放射能濃度 池の水が干上がった状態で表層底泥を採取し、ゲルマニウム半導体検出器で放射能濃度を測定した結果、放射性セシウム濃度が2,990~71,800Bq/kg-dryであった。深度方向の放射性セシウム濃度は、深さ35cmまでで最大610Bq/kg-dryと表層より低く、表層底泥に高い濃度の放射性セシウムが存在していることが確認された。 (2)薄層浚渫工法の除染効果 10cmの薄層で浚渫したときの表面線量率の低減率は、最大で95%、平均で91%であり、除染効果が確認された。放射線量率の測定結果からは、浚渫時に周辺の汚染された表層底泥を若干まき上げている可能性が示唆される。
作業員被ばく評 価、作業における 安全上の注意	作業員1人当たりの累積被ばく線量の平均値は83μSvで、平均作業日数は8.8日であった。また、累積被ばく線量の最大値は交通誘導員の152μSvであった。この結果は「平成24年度除染技術実証事業」での薄層覆砂工の作業も含む。なお、作業場所の試験前の空間線量率は平均で2.39μSv/hあり、試験後も大きな変化はなかった。
コスト評価	・歩掛り(作業人工、作業速度): (10cm施工時) 薄層浚渫工法 作業人工5人工/日、作業速度23.5m ³ /日 ・コスト評価: (10cm施工時) 薄層浚渫:12,100円/m ³ 【コスト評価条件】: コストは直接工事費のみ計上。 薄層浚渫 対象面積:20,000m ² 、浚渫厚さ:10cm、含泥率:20%、 浚渫量:19.8m ³ /日、作業時間:8hr(稼働6hr)、浚渫土砂処分費、特殊勤務手当は 含まず。

③ 現場における適用実績

適用実績

4 専門家評価

専門家評価結果

5 連絡先

機関名	株式会社小島組
部署名	営業本部

電話番号	052-691-7070
所在地	455-0021 愛知県名古屋市港区木場町1-6

6 その他

検索用キーワード	水域、浚渫、掘削、シンチレーションファイバ、薄層
登録日	2013年9月4日
最終更新日	2024年3月4日